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Abstract. In Floudas and Visweswaran (1990, 1993), a deterministic global optimization approach was 
proposed for solving certain classes of nonconvex optimization problems. An algorithm, GOP, was 
presented for the solution of the problem through a series of primal and relaxed dual problems that 
provide valid upper and lower bounds respectively on the global solution. The algorithm was proved 
to have finite convergence to an e-global optimum. In this paper, new theoretical properties are 
presented that help to enhance the computational performance of the GOP algorithm applied to 
problems of special structure. The effect of the new properties is illustrated through application of the 
GOP algorithm to a difficult indefinite quadratic problem, a multiperiod tankage quality problem that 
occurs frequently in the modeling of refinery processes, and a set of pooling/blending problems from 
the literature. In addition, extensive computational experience is reported for randomly generated 
concave and indefinite quadratic programming problems of different sizes. The results show that the 
properties help to make the algorithm computationally efficient for fairly large problems. 

Key words. Global optimization, indefinite quadratic programming quadratic constraints, multiperiod 
tankage quality problems. 

1. Introduction 

In recent years, global optimization of nonconvex constrained problems has 
received significant theoretical, algorithmic and computational attention. For 
surveys, books and applications for global optimization, see [5,8,9, 12, 
13, 18, 19, 22, 25, 27, 28, 31, 33]. 

The existing approaches for global optimization can be largely classified as 
deterministic or probabilistic approaches. The deterministic approaches include 
(a) Covering methods (e.g. [30]), (b) Branch and bound methods (e.g. 
[2, 3, 4, 20, 21, 26]), (c) Cutting Plane Methods (e.g. [34]), (d) Interval methods 
(e.g. [17]), (e) Trajectory methods (e.g. [7]), and (f) Penalty methods (e.g. [24]). 
Among probabilistic methods, the most important are (a) Random search meth- 
ods (e.g. [23]), (b) Clustering methods (e.g. [32]) and (c) Methods based on 
statistical models of objective functions (e.g. [35]). 

Floudas et al. [11] projected on the continuous variables so as to induce special 
structure in the primal and master subproblems, and used Generalized Benders' 
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Decomposition [16] in formulating a Global Optimum Search strategy. Though 
there was no guarantee of global optimality, the approach was found to be 
computationally quite effective for solving nonlinear and mixed-integer nonlinear 
programming problems. The approach was extended to bilinear, definite, indefi- 
nite and mixed-integer quadratic programming [1], and applied to the solution of 
Haverly's pooling problem [10]. 

Recently, Floudas and Visweswaran [14, 15] proposed a deterministic primal- 
relaxed dual global optimization approach for solving certain classes of nonconvex 
optimization problems. Making use of duality theory along with several new 
theoretical properties, a global optimization algorithm, GOP, was presented for 
the solution of the problem through a series of primal and relaxed dual problems 
that provide valid upper and lower bounds on the global solution. The algorithm 
was shown to attain finite ~-convergence and ~-global optimality. 

In this paper, new theoretical properties are presented that enhance signifi- 
cantly the computational application of the GOP algorithm to several classes of 
problems that are of special structure: (a) concave quadratic problems with linear 
constraints, (b) indefinite quadratic problems, and (b) quadratically constrained 
problems. Section 2 contains a statement of the problem. A brief review of the 
GOP algorithm is provided in Section 3. In Section 4, new properties are 
presented that greatly improve the computational efficiency of the GOP algo- 
rithm. Section 5 addresses the application of the GOP algorithm to a difficult 
indefinite quadratic problem and illustrates the computational effect of the new 
properties. In Section 6, the GOP algorithm with and without the new properties 
is applied to a multiperiod tankage quality problem that arises frequently in 
models of refineries. In Section 7, the algorithm is applied to several pooling/ 
blending problems from the literature. All three applications demonstrate that the 
proposed new properties improve the GOP algorithm by several orders of 
magnitude in computational performance. Finally, Section 8 presents the results 
of applying the algorithm with the new properties to test problems available in the 
literature as well as randomly generated concave and indefinite quadratic pro- 
gramming problems. 

2. Statement of the Problem 

The global optimization problem addressed in this paper is stated as follows: 
Determine an e-globally optimal solution of the following problem: 

min f(x,  y) 
X , y  

subject to g(x, y) <~ 0 (1) 

h(x, y) : 0 

x E X  

y E Y  

where X and Y are non-empty, compact, convex sets, g(x, y) is an m-vector of 
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inequality constraints and h(x, y) is a p-vector of equality constraints. It is 
assumed that the functions f(x, y), g(x, y) and h(x, y) are continuous, piecewise 
differentiable and given in analytical form over X • Y. The variables y and x are 
defined such that the following Condition (A') is satisfied: 

CONDITION (A'). The functions f(x, y), g(x, y) and h(x, y) are linear in x for 
every fixed y, and linear in y for every fixed x. 

REMARK 1. Conditions (A') implies that the Lagrange function L(x, y, h k,/zk), 
for fixed values of the multipliers h = A k and/z =/z k, is linear in x for every fixed 
y, and linear in y for every fixed x. 

REMARK 2. Through an appropriate use of transformation variables and parti- 
tioning of the resulting variable set [14], any problem that consists solely of 
quadratic terms in the objective function and/or constraints can be made to 
satisfy Condition (A'). Hence, the problems that are addressed by this paper 
include general quadratic programming problems and quadratic problems with 
quadratic terms in the constraints. 

REMARK 3. Condition (A') is a relaxed form of the following Conditions (A) 
defined in [14]: 

(a) f(x, y) is convex in for every fixed y, and convex in y for every fixed x. 
(b) g(x, y) is a convex in x for every fixed y, and convex in y for every fixed x. 
(c) h(x, y) is affine in x for every fixed y, and affine in y for every fixed x. 

Hence, the GOP algorithm can be directly applied to solve the classes of 
problems considered in this paper. However, the main objective of this paper is to 
exploit the spectral structure of Condition (A') so as to develop additional 
theoretical properties that can enhance the computational performance of the 
GOP algorithm significantly. 

3. Review of the GOP Algorithm 

The GOP algorithm can be used to solve nonconvex problems that satisfy 
Conditions (A) [14, 15]. The algorithm decomposes the original problem into 
primal and relaxed dual subproblems. The primal problem is solved by projecting 
on the y variables, and a feasible solution provides an upper bound on the global 
minimum and optimal multipliers for the various constraints. These multipliers 
are then used to formulate a Lagrange function that is used in the dual 
subproblem. Making use of several properties of the problem structure, the GOP 
algorithm solves the dual problem through a series of subproblems that, taken 
together, provide a lower bound on the global solution, and at the same time 
construct an underestimating function for the optimal solution. These relaxed dual 
problems are equivalent to setting a subset of the variables to a combination of 
their bounds, and solving for a corresponding region of the remaining variables. 
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The algorithm obtains finite convergence to an e-global solution through succes- 
sive iteration between the primal and relaxed dual subproblems. 

The major steps of the GOP algorithm are described below: 

STEP 0 - Initialization 
The first step is to identify the sources of nonconvexity in the problem formula- 
tion. Then, the variable set is divided into subsets of x and y variables that satisfy 
the necessary conditions. Once this is done, the set I c of connected x variables is 
identified. (The Lagrange function at iteration k, for fixed values of its multi- 
pliers, can be written as L(x,  y, A k,/x k) = qbl(y, A k,/xk)gtl(x ) + ~2(x, A k,/x k) + 

q~z(Y, Ak, /xk) �9 The subset of variables x that participate in Tl(x) are called the 
connected variables). Proper bounds for all the variables are obtained, or some 
values are assumed. The set CB, representing the various combinations of bounds 
of these x variables, is defined. Next, certain storage sets and counters are defined 
and initialized. A counter K is set to 1, and s e t s  K leas and K infeas and K infeas a r e  

set to empty sets. The storage parameters tz~~ max, Bj), ySt~ Bj) and 
k ,, r . , -max y t ~  , Bj) are defined over the set of bounds CB and the maximum expected 

number of iterations K max. Upper and lower bounds from the primal and relaxed 
dual problems, pUBD and M L~D are defined and suitably initialized. A conver- 
gence tolerance parameter e is defined. Finally, a starting point y~ is selected for 
the projected variables y. 

STEP 1 - Solution o f  a Primal Problem 
The value of yK is stored. The following primal problem is solved: 

min f (x ,  yK) 
x E X  

subject to g(x, yK) < 0 

h(x, yK) = 0 .  

If the primal problem is feasible, the set K leas is updated to contain K, and the 
optimal Lagrange multipliers/~K and/z K are stored. The upper bound provided by 
the primal problems is updated so that 

pUBD = MIN(pU.D, pK(yK))  , 

where pK(yK)  is the solution of the current (Kth) primal problem. 
If the primal problem is infeasible, the set K i'fe"s is updated to contain K, and 

the following relaxed primal subproblem is solved: 

min ~ a i +  ~ (/3+ +/3~)  
o t i , [ l + , ~ F ~ O  i i 

x E X  

subject to g(x, yK) _ a ~< 0 

h(x, yK) + r + -- ~ -  = O. 

Again, the values of the optimal Lagrange multipliers A~ and/x~ are stored. 



COMPUTATIONAL IMPROVEMENT OF THE GOP ALGORITHM 443 

STEP 2 - Selection o f  Lagrange Functions f rom the Previous Iterations 
Before solving the relaxed dual problems, the set of Lagrange functions from 
previous iterations (k = 1, 2 . . .  K - 1) that can be present for the current relaxed 
dual problems is determined. This is done by evaluating a set of qualifying 
constraints for every such Lagrange function at yK, the fixed value of the 
projected variables for the Kth (current) Lagrange function at yK, the fixed value 
of the projected variables for the Kth (current) primal problem. The qualifying 
constraints are the gradients of the Lagrange function with respect to the 
connected x variables. If all the qualifying constraints of a particular Lagrange 
function are satisfied at yK, then the Lagrangian and its accompanying qualifying 
constraints are selected to be constraints for the current relaxed dual problem. 

STEP 3 - Relaxed Dual Problem 
From the solution of the primal (or relaxed primal) problem of the current 
iteration, the Lagrange function is formulated�9 A form of this Lagrange function 
is added to every relaxed dual problem solved in the current iteration�9 These 
problems are solved as follows: 

(a) A combination of the bounds BI, of the connected variables in x, say 
B /=  BI, is selected�9 

(b) The following relaxed dual problem is solved: 

min ](s 
y ~  Y T , ~  B 

subject to 

k'.. l lin I, LB >1 L (x  By, y, A k, /3, )[xk 
k VxL(x ,  y, A k, tz )[x~ <~ 0 

v~ L(x, y, # ,  ~)1~ < 0 
k k,,plin 

O~>L~(x 8j, y, A1, tt~)lxk 
k VxiLl(x, y, A~, ],s 0 
k ~_ 

VxiL,(x, y, A~, ~,)1.,~ o 
K'~ l lin I-tB >t L(X B1, y, A x, tx )Ix k 

V~L(x, y, A K,/zK)l;~< 0 
K VxL(x, y, ,~" , ,  )D-~>O 

O>~ Ll(X B', y, A~, ]'/'lK\llin)l~ k 

VxiLI(X, Y, A K, ~f)lxX~< 0 

],Jb I ) I x  K ~ 0 VxL~(x, y, h~, K 

i f x i l  = 

if xBj= i 

�9 xj] i f  x i J  =- 

�9 B .  

i f  x i ] 

if  xBt = xVi 

if X Bl = x L 

i f  x i = X 

�9 B l if x~ x~ 

V] ~ UL(k ,  K)  

k = l , 2 . . . K - 1  

k E  K/ea~ 

Vj E VL(k ,  K)  

k = l , 2 . . . K - 1  
k ~ K infeas 

if  K @ K / ~  

Here, the first two sets of constraints involve Lagrange functions gener- 
ated from feasible primal and infeasible primal problems respectively 
during the previous iterations. Also included are the qualifying constraints 
for the Lagrange functions. The next two sets of constraints correspond to 

if  K E K i ~ f  e~s 
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the Lagrange function (and its qualifying constraints) formulated from the 
primal problem of the current iteration and evaluated at a bound of 
X = X Bt. 

The solution of this problem, if feasible, is stored in tz~~ Bl) and 
s~ B3. 

(c) A new combination of bounds for x, say B l = B2, is selected. 
(d) Steps (b) and (c) are repeated until the relaxed dual problem has been 

solved at each set of bounds of the connected variables in x, that is, for 
every B t E CB. 

K+I STEP 4 -  Selecting a New Lower Bound and y 
After the relaxed dual problem has been solved for every possible combination of 
the bounds x Bt, a new lower bound is selected from the stored values of/z 8. This 
corresponds to the lowest value of the stored solutions. At the same time, the 
corresponding stored value of y is selected to be the fixed value of the projected 
variables for the next (K + 1) iteration. Once selected, the stored values are 
deleted from the stored sets. This ensures that the relaxed dual problem does not 
return the same value of y and ~ ,  during successive problems, except during the 
final convergence stage of the algorithm, when the solutions of the relaxed dual 
problems at successive iterations can be (and usually are) very close to each other. 

STEP 5 -  Check for Convergence 
IF convergence is satisfied, STOP. Else, set K = K + 1 and return to step 1. 
Finally, the check for convergence is performed. If the lower bound from the 
relaxed dual problem is within e of the upper bound from the primal problem is 
within �9 of the upper bound from the primal problems, that is, if MLBD> 
pUBD _ ~, (alternately, if both pWD and M LBD are  large numbers, t h e n  (pUBD _ 

M LBD) ~ MLBD�9 can be used) then the solution corresponding to the upper bound 
from the primal problems is an e-optimal solution to the original problem, and 
the algorithm is stopped. Else, K -- K + 1 and the algorithm returns to Step 1. The 
algorithm continues with Steps 1-5 until convergence is reached. 

4. New Properties for the GOP Algorithm 

In its original form, the GOP algorithm requires the solution of a relaxed dual 
problem corresponding to every combination of bounds of the connected x 
variables. This may lead to the solution of a large number of relaxed dual 
subproblems at every iteration. It has been observed, however, that a number of 
the subproblems are either infeasible or have identical solutions. This led to 
further investigation of the structure of the subproblems, and consequently, the 
form of the Lagrange function that is formulated from the corresponding primal 
problems and used in the solution of the relaxed dual subproblems. In this 
section, new properties of the Lagrange function are discussed. These properties 
help to greatly improve the computational efficiency of the GOP algorithm. 
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4.1. L I N E A R I T Y  OF T H E  L A G R A N G E  FUNCTION 

The problems that are ,addressed in this paper satisfy Condition (A'). From 
Remark 1, the Lagrange function that is generated from the primal problem is 
linear in x for all fixed y, and linear in y for all fixed x. Therefore, the 
linearization of the Lagrange function w.r.t, x is the same as the Lagrange 

k,~,~ = L(x,  /zk)). This leads to the following function (that is, L(x ,  y, A k, ix )1,~ Y, Ak, 
observation: 

For every i , VxL(x  ' Y, A~, k )  is not a function o f  x. 

Therefore, 

k'~llin = V x i L ( x ,  Ak, k ) .  V~L(x,  y, A k, iz )ix k y, 

Based on this observation, the following properties are now stated. 

PROPERTY 1. At  the kth iteration o f  the G O P  algorithm, let g ( y ) =  
VxL(x ,  y, A k, ix k) for  some j. Then, i f  g (y)  >i 0 for all y (respectively g(y)  >i 0 for  

all y),  it is not necessary to solve those relaxed dual problems that have g( y) <~ 0 
(respectively g( y)>i O) as a qualifying constraint. 

Proof. The Lagrange function formulated from the kth primal problem has the 
following form: 

L(x ,  y, Z ~, IX k) -- L (x  k, .y, ~ )  + VxL(x, y, A ~, ~ ) "  (x - x ~) 

= L(x  k, y, A k, ix ~) + ~ Vx,L(x, Y, A k, tx ~) 
i-~j 

�9 (x i - x f )  + g ( y ) ' ( x  i -  x~) .  

Consider the two Relaxed Dual (RD) problems that are solved at the kth 
iteration for two combinations of bounds of the connected x variables, which 
differ only in the bound of x r That is, consider two combinations B 1 and B 2 such 
that 

B , ~ { x f ,  B B L B Xff} 
X 2 ~ . . . , X j _ l ,  X j  , Xj+ 1 . . . 

B . X B U B . .  x B } .  B 2 =- {x~, x 2 . . . .  j_~, x j ,  xi+ I . 

The two corresponding relaxed dual problems are shown below: 

(1) For x B = xB1: The RD problem is 

min/x B 
y,lXB 

s.t. tz~/> L(x  ~, y, A ~, p k) + ~ VxiL(x ' Y, A~, ixk). (x B _ xki ) 

+ g(y)"  (x L - x~) i r  

g(y)>~O, F(tx~, y)<~O. 

(2) 
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(2) For x B = xB2: The RD problem is 

min t~  
Y,I'*B 

s.t. /x B i> L(x k, y, A k, i x~) + Z V~L(x, y, A ~, Ixk) �9 (xf  - x f )  

+ g(y)" (x 7 - x~)i~i (3) 

g(y)<~O, F(Ix~, y)<~O, 

where the last constraint (F(/x~, y)~< 0) has been added to represent all other 
constraints (such as lagrange functions and their qualifying constraints from 
previous iterations, constraints from the original problem etc.) that are common 
to both the relaxed dual problems. 

Consider the qualifying constraint corresponding to the variable xj for the two 
problems. The function g(y)  is linear in y. Hence, assuming that the bounds on 
the y variables are known, it is possible to determine whether g(y) is at one of its 
bounds (lower or upper). Suppose that such a check reveals that g(y)>! 0 is 
always true. Then, this can be added as a constraint to both problems (2) and (3). 
As can be seen, problem (2) is not affected. However, problem (3) becomes 

min/x B 
Y,NB 

s.t. /x B/> L(X k, y, A k, Ix k) + ~, V~L(x, y, A k, tx*) �9 (x f  - x f )  
i c j  

+ g(y) .  

g(y)~<0,  F( /z~ ,y )~<0 ,  g(y)~>0.  (4) 

From this, it can be seen that for problem (3), the addition of the new constraint 
is equivalent to setting g(y )=  0. Hence, the first constraint in problem (4) 
becomes 

tx. >i L(x  k, y, A k, tx k) + Z Vx,L(x, Y, A k, Ixk)" (x f  - x f )  + g (y ) - ( x  7 - x~) 
i,,~j 

>I L(x*, y, A ~, Ix k) + ~ VxiL(x, y, A k, tx~)" (x f  - x f )  . 
i c j  

Hence, problem (3) can be written as 

min/x B 
y ,I~ B 
s.t. /x B >~ L(x k, y, A k, t xk) + ~, V~L(x, y, A*, Ixk) �9 (x f  - x f )  (5) 

i c j  

g ( y ) = 0 ,  F(/x B,y)~<0.  

At  the same time, problem (2) can be written as 

min/x 8 
Y,I~B 

s.t. /x B/> L(x k, y, A k, Ix k) + ~, Vx,L(x, y, Xk, ix,). (x f  - x f )  

+ g(y)" (x~ - x~) (6) 

g(y)>~O, F(Ix~, y ) ~ O .  
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Since g(y)>~0 and x)~<x~, the solution of problem (6) is always less than or 
equal to the solution of problem (5). Also, the feasible region of problem (6) 
contains the feasible region of problem (5). Hence, it is not necessary to solve the 
problem (5) (since, according to the GOP algorithm, we select the minimum of 
the solutions of the relaxed dual problems solved at all the combinations of 
bounds of the connected x variables). Moreover, since the set of bounds for the 
xg, i @ {1, 2..n}\{]} was chosen arbitrarily, it is not necessary to solve the relaxed 
dual problem for any combinations of bounds of the x variables for which 
g(y) ~ 0 is a qualifying constraint. Similarly, the opposite case (when g(y) is 
always negative) can be proved. 

PROPERTY 2. I f  VxjL(x, y, A ~, Ix ~) = 0 for all y, then it is sufficient to solve for 
only those combination of  bounds for which x i is at either its lower or upper 
bound. 

Proof. Since g(y)= 0, the Lagrange functions formulated from the kth itera- 
tion and used in the two relaxed dual problems (2) and (3) are identical. Also, the 
qualifying constraint w.r.t xj for the two problems are the same, being of the form 
g(y) = 0. Hence, problems (2) and (3) have the same solution. Therefore, it is 
sufficient to solve either problem (2) or problem (3). Since this holds regardless 
of the set of bounds for the x~, i E 1, 2..n\{j}, it is sufficient to, solve for only 
those combinations of bounds that have xj set to either its upper or its lower 
bound. 

PROPERTY 3. Suppose that there is a one-to-one correspondence between the x 
and y variable set in the feasible region of  the problem, and that Yi = xi. Then, the 
bounds on the connected x variables can be updated without destroying the 
property of  e-global optimality of  the GOP algorithm. 

Proof. By the assumption of one-to-one correspondence, there is a yi for every 
x i. Moreover, it is assumed that yi = x/. Then, consider the Kth iteration of the 
GOP algorithm. The fixed value of y for the primal problem is yX. Then, before 
solving the relaxed dual problems for the current (Kth) iteration, the Lagrange 
functions from previous iterations are selected to be present in the relaxed dual 
problems for the current (Kth) iteration. Since these Lagrange functions are 
selected on the basis of their qualifying constraints being satisfied at yK, there will 
be one Lagrange function from every iteration present in the relaxed dual 
problems of the Kth iteration. Along with this Lagrange function, there will be a 
qualifying constraint of the form g(y) ~ 0 or g(y) <~ O. 

Let y~, y 2 . . .  yX-1 represent the fixed values of y for all iterations prior to the 
Kth iteration. Then, for yi, i = 1, 2 . . .  n, it is possible to determine the lower and 
upper bounds, that is, for every i, 

K - 1  y~= MIN(y],  yf . . . y~-a) and y / g = M A X ( y ~ , y ~ . . . y ~  ) 

can be determined. Then, it follows that yX E [yf ,  yy] Vi. 
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Now, the Lagrange functions that are added from the previous iterations have 
their qualifying constraints satisfied at yK. Since these constraints,are linear in y, 
and are satisfied identically as an equality at the respective yk, it follows that they 
are satisfied for all y lying between y~ and yK. Moreover, the presence of these 
qualifying constraints in the relaxed dual problems ensures that the values of Yi 
are restricted to lie between y~ and yy. Since there is a direct correspondence 
between the values of y and x, this means that for every i, the bounds of x i can be 
updated to (x~, v xi )- [] 

4.2. ITERATIONS WITH INFEASIBLE PRIMAL PROBLEMS 

Often, the values of y~+X that are returned by step 4 of the GOP algorithm after 
solving the relaxed dual problems and selecting the minimum solution are such 
that the primal Problem is infeasible. Suppose that this happens at the kth 
iteration, that is, the primal problem, when solved for y = yk, does not have any 
feasible solution. Then, it is necessary to solve a relaxed primal problem for this 
fixed value of y = yk. Because of the way in which the relaxed primal problem is 
solved, the Lagrange functions formulated from this problem (having the form 
Ll(x, y, A k,/x k) ~< 0 are used mainly as constraints defining the feasible region for 
the relaxed dual problems in terms of y. At the same time, if there are other 
stored solutions remaining (from the solutions of the relaxed dual problems of 
previous iterations), it is likely that some of these solutions provide values of y 
that are feasible for the primal problem. Therefore, for iterations when the primal 
problem is infeasible (such as the kth iteration), the solution of the relaxed primal 
problem is used to generate constraints to be used for future relaxed dual 
problems, but to not actually solve the relaxed dual problems for the current (kth) 
iteration. This strategy can be applied in general as long as there are stored 
solutions remaining at the kth iteration, since it is always possible to backtrack to 
the kth iteration if no feasible solutions can be found by future iterations. 

5. Application 1: IndefiniteQuadratic Problem 

This example is a large indefinite quadratic programming problem. It is taken 
from [12]: 

min ~b(x, y) = 4)1(x ) + 4~2(y ) 
x , y  

s.t. Alx + A2Y<~b 

x~>0 ,  i = 1 , 2 . . . 1 0  

y~/>0, i=11,12. .20 

where 

1 ~ 1 ( X ) = ~  - C i ( x i - ~ l )  2 01<0 , Ci~>0, i = 1 , 2 . . . 1 0  
i = 1  

0 2 ~  _ 2  
q~2(y)=~- Ci(y i -y i )  0a>0 , Ci~>0, i = 1 1 , 1 2 , . . . 2 0  

i = 1 1  
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Table 1. Data for the Indefinite Quadratic Programming Problem 

C = (63, 15, 44, 91, 45, 50, 89, 58, 86, 82, 42, 98, 48, 91, 11, 63, 61, 61, 38, 26) 

5 6 4 4 5 6 4 4  
5 4 1 4 4 2 5 2  
2 4 7 3 1 5 7 6  
6 3 2 1 6 1 7 3  
6 4 5 2 2 4 3 2  

1 3 5 5 7 4 3  
3 1 6 1 6 7 1  
7 8 7 6 5 8 7  
5 3 8 1 3 3 5  
1 1 1 1 1 1 1  

ofthisproblemoccursat 

- 3 5  
5 4  
1 5  
3 2  
6 6  

A I =  5 5 2  
3 6 6  
1 2 1  
8 5 2  
1 1 1  

The global solution 

2 = (-19, -27, -23, -53, -42, 26, -33, -23, 41, 19) 
17 = (-52, -3, 81, 30, -85, 68, 27, -81, 97, -73) 

b = (380,415,385,405,470,415,400,460,400,200) 

- 8 2 4  1 1 1 

x* = (0, 0, 0, 62.609, 0, 0, 0, 0, 0, 0) 

y* = (0, 0, 0, 0, 0, 4.348, 0, 0, 0, 0) 

3 6 
1 7 
7 7 
7 5 

Az= 4 1 
4 3 
2 3 
4 5 
1 1 

2 1 7 3  
1 7 7 5 8 7 2 1  
2 4 7 5 3 4 1 2  
8 2 3 4 5 8 1 2  
3 6 7 5 8 4 6 3  
7 3 8 3 1 6 2 8  
1 4 3 6 4 6 5 4  
5 5 4 5 4 2 2 8  
5 6 1 7 1 2 2 4  
1 1 1 1 1 1 1 1  

where  01 = - 1 ,  02 = 1, and C1, C2, 2 and 17 are constant  vectors.  Hence ,  the 
funct ion  4~1(x ) is concave,  while q~2(Y) is convex.  The  data  for  this p rob lem is 
given in Table  I. 

New t ransformat ion  variables Yl th rough  Ym and constraints are in t roduced  in 
the  fol lowing manner :  

Y l  = X l  , Y2  = X 2 ,  �9 �9 �9 , Y~o = x l o  

so that  

01 
z C i ( x i - Z ) ( f i - Z ) .   l(x, y )=  7 i=1 

Then ,  projecting on y;,  i = 1, 2 , . . . ,  20 leads to the primal p rob lem being essen- 

tially a funct ion evaluat ion at x = y~. This implies that  the original constraints can 

be  ignored  for  the primal problem.  Hence ,  the primal p rob lem at the k th  i terat ion 

can be wri t ten as known  below: 

01 ~ - xi)(y~ -~ i ) - ] -  ~ i=~11 min ~- Ci(xi -- ~ 02 Ci(Y~ - --yi)2 
Xl'X2"'xlO i = 1  

s . t . x ~ - y f = 0  i = 1 , 2 . . . 1 0 .  

The  constraints  f rom the original p rob lem are used in the relaxed dual problem,  
since they can be wri t ten with y~, i = 1, 2 , . . . ,  20 as the variables (Since y~ is 

equivalent  to x e for  i = 1, 2 , . . . ,  10.) 
F r o m  the k th  primal problem,  the Lagrange  funct ion can be fo rmula ted  as 

0~ ~ 02 ~ Ci(y ~ - -2  
L(x, y, .~)= 2 i=1 Ci(xi- ~ii)(Yi- ~ii) q- -~ i=11 - - Y i )  

10 

+ Z a~(xi- Yi). 
i = 1  
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The KKT gradient conditions for the kth primal problem provide: 

01 
VxiL(x, y~, h k) = ~ .  C i �9 ( y f  - ~ )  + Ai = O. 

Use of the KKT gradient conditions leads to the following form of the Lagrange 
function: 

L(x ,  y,  A k) = ~ Ci(x i - ~ ) ( y i  - y f )  + -~ C~(y~ - ~)2 
i = 1  i = 1 1  

10 

- E A yi. 
i = 1  

Hence, since C is a positive vector, the qualifying constraints can be written as 

0 1 ( y i - y ~ ) ~ O  i f x ~ = x ~ ,  and 

01(y i -Yk i )<~O i fxF = x/~ 

for i =  1 , 2 . . .  10. 

The relaxed dual  problem will also contain the original constraints for the 
problem, with the x~, i = 1,2 . . . .  ,10 replaced by the corresponding yp This 
ensures that the relaxed dual problem never returns infeasible values of y~ for the 
next iteration. 

5.1. THE GOP ALGORITHM WITHOUT THE NEW PROPERTIES 

When the (GOP) algorithm was applied in its original form to solve this problem 
the algorithm took 3-4 iterations to converge to a global solution. The algorithm 
needed to solve one primal, and 1024 relaxed dual subproblems (2 l~ at every 
iteration. From a starting point of 0 for all the y variables, the algorithm needed 4 
iterations to converge, solving a total of 4096 relaxed dual problems. 

5.2. THE GOP ALGORITHM WITH PROPERTY 1 

Consider the starting point of y = 0 for the GOP algorithm. The primal problem, 
for this fixed value of yl  is given below: 

20 _ _  

02 E CiY2i min 0I C i ( x i  - xii)~ii + --2 i = 1 1  Xl,X2..xlo 2 i = 1  

subject t o x  i = O  i = 1 , 2 . . . 1 0 .  

The solution of this problem takes place at x = 0, and the value of the objective 
function is 547663.5. The optimal multipliers for the constraints are 

A = {598.5,202.5,506, 2411.5,945, -650,  1468.5,667, -1763, -779} .  

Hence, the Lagrange function formulated from the first primal problem has the 
form 
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10 20 10 

L(x, y, A 1) ~- - 0 , 5  E Ci(Xi--~)Yi +0 .5  • Ci(Y ~ _ ~ ) 2 _  E h f y , .  
i=1 i=11 i=1 

From this, it can be seen that all the qualifying constraints are of the form y~ 1/- 0 
or yi ~< 0. Now, the lower bound for all the y variables is 0. Hence,  instead of 
solving 1024 relaxed dual problems, it is sufficient to solve only the relaxed dual 
problem for which qualifying constraints are all of the form Yi ~> 0. This corre- 
sponds to the combination of bounds x B= {x~}, i = 1, 2 . . .  10. Setting the x 
variables to their upper bounds and solving the resulting convex problem in y, the 
solution obtained is 

y = {5.936, O, O, 58.9954, O, O, O, O, O, O, O, O, O, O, O, 8.219, O, O, O, O} 

with a value of /x B = 43855.57. These are the fixed value of y for the second 
iteration and the lower bound on the global optimum respectively. 

At  the second iteration, the primal problem has an objective value of 
63469.1141, and the following set of multipliers is obtained: 

A = { 7 8 5 . 4 , 2 0 2 . 5 , 5 0 6 , 5 0 9 5 . 8 , 9 4 5 , - 6 5 0 , 1 4 6 8 . 5 , 6 6 7 , - 1 7 6 3 , - 7 7 9 } .  

From these values, the Lagrange function for the second iteration can be 
written as 

L(x, y, A 2) = - 0 . 5  E 
iA1 or 4 

- 0 . 5 C 4 ( x 4  - T 4 ) ( y  4 

10 

- E Afy, .  
i = i 0  

C i ( x i - ~ ) y  i - 0.5C1(x 1 ~ ) ( y ~  - 5.936) 

20 
- -  2 - 5 8 . 9 9 5 ) + 0 . 5  • C i ( y i - y i )  

i=11 

Thus, for this iteration, all but two of the x variables (X 1 and X4) have the 
qualifying constraint Yi ~> 0 or Yi ~< 0 associated with them. Hence,  since the lower 
bound of all the y variables is 0, these eight x variables can be set to their upper 
bounds,  which corresponds to the qualifying constraints yi~>0, i =  
{1, 2 . . .  10}\{1, 4}. Therefore ,  it is necessary to solve only for the four combina- 
tions of bounds of the variables x 1 and x4, with all other xi at their upper bounds. 
Thus, only four relaxed dual problems need to be solved at the second iteration. 
Of these four problems, three provide solutions with a value of /x  B that is greater 
than the global solution. The fourth relaxed dual problem, corresponding to 
xl = xlC and x 4 = x 4U gives a solution of ttB = 49188.9, with 

y = (0, 0, 0, 62.609, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4.348, 0, 0, 0, 0}.  

This is the global solution for the problem. At the third iteration, the GOP 
algorithm converges to this solution, needing to solve one primal and two relaxed 
dual problems at the third iteration. 
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Thus, by making use of Property 1, the GOP algorithm needs to solve only 7 
relaxed dual problems as opposed to the 4096 problems solved originally. Thus, 
there is an improvement in the performance of the algorithm by almost three 
orders of magnitude. 

6. Application 2: A Muitiperiod Tankage Quality Problem 

Chemical process design and control involves optimization of models that are 
nonconvex in nature. Often, these nonconvexities occur in the form of bilinear 
constraints in the plant model. Examples of this can be found in the design of heat 
exchanger networks, pooling and blending units, and distillation sequences. In all 
these cases, the bilinearities occur due to the necessity of introducing the flow rate 
(stock) and composition (quality), associated with some or all streams (products), 
as variables in the model. Hence, optimization of such models need to be treated 
as global optimization problems. 

The following example concerns the application of the (GOP) algorithm to a 
multiperiod tankage quality problem that arises often in the operations of 
refineries. The following sets are defined for the mathematical formulation of the 
problem: 

PR = { p }: set of products, 

CO = {c}: set of components, 

T= {t}: set of time periods, 

QL = (/}: set of qualities. 

For this problem, there are 3 products (pl ,  p2, p3), 2 components (cl, c2), and 
3 times periods (tO, tl, t 2 - w h e r e  tO is the time period corresponding to the 
starting point). The following variables are defined: 

Xc,p,t: amount of component c allocated to product p at period t ,  

Sp,t: stock of product p at end of period t ,  

qp,~,t: quality l of product p at period t .  

The objective of the problem is to maximize the total value at the end of the 
last time period. The terminal value of each product (valp) is given. Lower and 
upper bounds on the quality variables are provided, as well as initial quality 
values. Limits on product stocks (stockp,t) for each time period are also provided, 
along with the qualities in each component (QUc,l) and the product lifting (LFp,t) 
for every period. The data for this problem is provided in Table II. 

The complete mathematical formulation for this problem, consisting of 39 
variables and 22 inequality constraints (of which 12 are nonconvex), is given 
below: 
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Table II. Data for the multiperiod tankage quality problem 

PR ~ (p l ,  p2, p3} 
T--- {tO, tl, t2} 

Terminal Value of products: valp = (60, 90, 40). 

Arrivals of components ARc. ' 

Component Time Period 

tO tl t2 

cl 0.200 0.250 0.150 
c2 0.200 0.150 0.250 

Lower Bounds on Product Quality q~.~ 

Products Qualities 

CO~ {cl, c2} 
QL ~ {ql, q2} 

Product Lifting LFp., 

Product Time Period 

tl t2 

p l  0.080 0.120 
p2 0.150 0.100 
p3 0.150 0.200 

ql  q2 

p l  70 50 
p2 80 70 
p3 60 40 

Qualities in Components QUcj 

Components Qualities 

Upper Bounds on Product Quality qpV 

Products Qualities 

ql q2 

p l  100 100 
p2 100 100 
p3 100 100 

Initial Quality Values qinitcj at time tO 

Components Qualities 

ql  q2 

cl 40 80 
c2 100 50 

Limits on Product Stocks (stockp,,) 

Product Time Period 

ql q2 

p l  70 50 
p2 90 70 
p3 60 40 

tO tl t2 

p l  0.050 0.100 0.100 
p2 0.050 0.100 0.100 
p3 0.050 0.100 0.100 

max ~ valp.sp,,t2, 
p ~ P R  

s u b j e c t  to  2 Xc,p, t ~ ARc,, t ~ { t l ,  t 2 } ,  c ~ CO 
p C P R  

Sp,t+ Z xc.p,t+l-Sp,t+l>~LFp,t+i t ~ { t O ,  t l } ,  p E P R  
c c C O  

Sp,,.qp,z,, + ~ Xc,p.t+l. QOc,l~(Sp,,+i + LFp,,+l).qp,t,,+ ~ 
c ~ C  0 

t@{tO, t l } ,  p E P R ,  I E Q L .  
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The sources of nonconvexities in this problem are the bilinear terms sp. r qp,l,t in 
the last set of constraints. Thus, fixing either the set of s or q variables makes the 
problem linear in the remaining variables. 

This problem was first studied through the application of a Global Optimum 
Search (GOS) approach [10, 11]. The GOS was fairly successful in identifying the 
global minimum for the problem, but from some of the starting points, it 
converged to either a local solution, or a non-local, non-global solution, even 
though the special feature of "Radial Search" was applied. 

In order to reduce the problem to a form where the GOP algorithm can be 
applied, it is necessary to identify the set of x and y variables. The sources of 
nonconvexities in this problem are the bilinear terms S p , t . q p , l , t  in the last set of 
constraints. Thus, fixing either the set of s or q variables makes the problem linear 
in the remaining variables. Here, the q variables are chosen to be the y variables, 
that is, they are fixed for the primal problem. Then, the variables s from the set of 
connected x variables. 

For a fixed q = qg, the primal problem is given by: 

min ~ --oalp.s,,t2, 
p C P R  

subject to ~ x -<ARc, t E { t l ,  t2} c E C O  (7) c , p , t  ~ , 
p ~ P R  

-Sp , t -  E Xc,p,t+t +Sp,t+l<~-LFp,t+l tE{tO, t l } ,  
c E C O  

p ~ PR (8) 
k k 

-Sp,rqp,t, t - ~ X c , p , t + l ' Q U c , l  ~ - -  ( S p , t +  1 q -  LFp,t+l).qp,,,t+l 
c E C O  

tC{tO, t l } ,  p ~ P R ,  I E Q L  (9) 

O - - S p , t ~ O  p E P R ,  t E ~ { t O ,  tl} (10) 

Sp, t - stockp, t <~0 p E PR, tE  {tO, tl} (11) 

where the bounds on the stocks s have been explicitly incorporated in the 
problem. The problem has been written as a minimization problem by multiplying 
the objective function by -1 .  It should be noted that s(p, 'tO'), the stock of 
product p at the beginning of the first period, is fixed. 

The KKT gradient conditions for the x variables are given as 

VXcp,L(x,s, qk, lxk)= k - ~ QUc, , = 0  
[ ' L l c  t - -  ['L2p t 1 ]'L3p l t 1 '  " 

. . . .  - I E Q L  ' ' - 

The KKT gradient conditions for the connected variables s in this problem are 
given by 
(i) For t = ' t l ' ,  p @ PR, 

~ 2 p t  1 ]Jb2pt  ~ -  E ( [J63p I t 1 - -  ~ ' L Z p t  - -  - -  /'L3p l , ) ' q P ' z "  
�9 " - " I ~ Q L  ' " - ' " ' 

+ IX;., = 0. 
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(ii) For t = 't2', p E PR,  

k k 
V ' P ' L ( x ' s ' q k ' t x k ) = - v a l p + / X 2 P ' "  ' - 1 -/x2P ' + '  tcQL ~2 (~3, ~ ,,, _ i --/X3~, ,) " ,  , qp,t,, ~ 

k k 
- -  ].s -~- I,.g5p,t = 0 , 

k k k where ~1 k, tx~, tx 3, ~L 4 and/x  5 correspond to the constraint sets (7) through (11). 
The Lagrange function formulated from the kth primal problem is given by 

L ( x , s ,  q , /xk)  : ~'. - va lp . sp , , t 2 ,+  ~ /Xlc,, ( ~ - A R c , t )  
pEPR t~{t l , t2}  p R Xc 'p ' t  

k ~ + + LFp,,+ 1 -~ E ].~2p, t - -Sp , t  i Xc ,p , t+ i  Sp , t+l  
tC{tO,tl} c~CO 

p E P R  

~- E ]-L3p,l,r ( qp, l , t  Xc ,p , t+ l  " -Sp,t" - E QUa,, 
tE{tO,tl} c~CO 

pCPR 
IEQL ) 

q- [Sp, t+l  -}- LFp,,+I]" qpa, ,+1 

+ E ~'Z4p t ( 0  --  Sp , t )  -{- E ~5p t(Sp, t  - -  S t O C k p , t ) .  
t~{ t l , t2}  ' tE{t l , t2} ' 

pEPR pGPR 

Using the KKT gradient conditions for the x variables, it can be seen that the 
terms in x in the Lagrange function will vanish (due to the fact that they are not 
connected variables). This, along with the use of the KKT gradient conditions for 
the s variables, enables the Lagrange function to be written in the following form: 

L ( x , s ,  q, lxe) = - • tx,c, - A R c ,  • Ix2pk " 
tEtE {tl ,t2} t~  {t0,tl } 

c~CO pCPR 

+ 
E ]d~3p,l, t " L F p , t + ] "  qp , l , t+ l  - E 

tE {tO,tl } t@ { t l , t2 } 
pCPR p ~ P R  
IEQL 

+ E 
tE{t l , t2}  

p ~ P R  
l~OL  

tZSp,, " s t o c k p , t  

k k k 
, , -  - -  q p , l , t ) .  Sp,t �9 ~3p  l t 1 --  Id'3p,Lt) " ( qp, l , t  

Thus, the qualifying constraints to be added with the Lagrange function to the 
relaxed dual problem are of the form 

E k k k 
qpa,t) ( ] ~ 3 p l t  1 - -  - -  ~ 0  ~3p, ,)" (qp,/,, 

I ~ Q L  ' " - ' ' 

I"g3plt 1 - -  Id~3plt)" ( q p , l , t -  qp,,,,) < 0  
I c Q L  ' ' - ' ' 

L 
i f  Sp, t ~-" S p, t 

U 
i f  Sp, t = S p, t 

for all t E {t l ,  t2}, p E PR. 
There are six s variables (corresponding to three products at two periods tl and 

t2). Hence,  there are 64 (26) relaxed dual problems solved at every iteration. 
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6.1. THE GOP ALGORITHM WITHOUT THE NEW PROPERTIES 

When the GOP algorithm was applied to the problem in this form, it identified a 
global solution of -9.5316 from all considered starting points. Starting from the 
lower bound, the algorithm took 16 iterations to converge, solving a total of '16 
primal and 1024 relaxed dual subproblems. In addition, the algorithm needed to 
solve 3 relaxed primal problems. 

6.2. THE GOP ALGORITHM WITH THE NEW PROPERTIES 

When the GOP algorithm was applied while making use of Property 2 and 
avoiding the solution of the relaxed dual problems for iterations when the primal 
problem was infeasible, it required 11 iterations to converge, and needed to solve 
a total of 240 relaxed dual subproblems (vs. 1024 relaxed dual problems before). 
In addition, when Property 1 was also used, the number of relaxed dual problems 
that were solved was reduced from 1024 to 8. From other starting points, similar 
improvements were obtained upon making use of the new properties. 

7. Application 3: Pooling/Blending Problems 

In this section, We consider the application of the proposed algorithm to several 
pooling/blending problems arising in chemical process models. These problems 
are taken Ben-Tal and Gershovitz (1992), and have the following form: 

max - ~2 ~2 cix a + ~, ~,  djylj + 2 2 (dj - ci)z q 
i l l j i j 

subject to ~ xil + ~ zq <~ A i 
/ j 

x .  + ~ ytj = 0 
i j 

xu <~ S t 
i 

--  E qikXil  -}- P lk  E YIj  = 0 
i j 

yq + ~ zq <~ Dj 
l i 

2 (Ptk - Qj~)Yq + 2 (qik - Qj~)zij <-o 
l i 

P l k ,  Xi l ,  Y l j ,  Zij  ~ 0  

where 

{1, 2 , . . . ,  i , . . . ,  I} --= set of components 

{1, 2 , . . . ,  ] , . . . ,  J} ~ set of products 

{ 1 , 2 , . . . ,  k , . . . ,  K} ~ set of qualities 

( 1, 2 . . . .  , l , . . .  , L } ------ set of pools 
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Table III. Pooling Problems From Ben-Tal and Gershovitz (1992) 

Problem No. Problem Size GOP Algorithm 

I J K L Iterations CPU (HP730) 

1. 4 2 1 1 7 0.95 
2. 5 5 2 1 19 3.19 
3. 5 5 2 3 47 44.54 
4. 5 5 2 3 42 40.31 

and the following variables represent: 

x a - amount  of component  i allocated to pool l ,  

Ytj - amount  going from pool l to product j ,  

zq - amount  of component  i going to product j ,  

Pzk-  level of quality k in pool l .  

The  following parameters represent: 

A ~ -  Upper  bounds for component  availabilities, 

D i -  Upper  bounds for product  demands, 

S z -  Upper  bounds for pool sizes, 
Q j ~ -  Upper  bounds for product qualities, 
qik - L e v e l  of quality k in component  i, 

c i -  Unit price of component  i, 

d i - Unit price of product j. 

Four  different instances of this problem were considered. The data for these 
problems can be found in [6]. The results of applications of the enhanced GOP 
algorith m to these problems is given in Table III. 

8. Concave and Indefinite Quadratic Problems 

The algorithm was applied to a number of standard test problems from the 
l i terature and a large number  of randomly generated concave and indefinite 
quadratic programming problems. This section presents the results for these runs. 
All the results reported in this section were obtained by running a version of the 
G O P  algorithm coded in C. The algorithm was run on an HP 9000/730 worksta- 
tion with 64 MB of memory.  The linear programming solver CPLEX was used to 
solve the linear primal and relaxed dual subproblems. 

8.1. EXAMPLE PROBLEMS FROM LITERATURE 

The G O P  algorithm was applied to 11 small-size concave programming problems 
from [29]. These problems have the following form: 

min q,(x, y) = 01q~(x ) + 02dry 
x,y~J~ 
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Table IV. Example Problems from Phillips and Rosen (1988) (e = 0.001) 

Problem Problem Size GOP Algorithm P & R 

M N K Iterations CPU (HP730) CP U (CRAY2) 

example 5 2 0 9 1.09 
probl 5 6 0 3 0.54 
prob2 5 6 0 3 0.55 
prob3 5 6 0 2 0.45 
probl0 4 2 0 10 1.17 
probll 4 3 0 12 1.48 
probl2 4 3 0 12 1.50 
probl3 10 3 0 5 0.68 
probl4 10 3 0 6 0.82 
probl5 4 4 0 I0 2.03 
prob20 9 2 1 48 8.98 

0.026 
0.022 
0.020 
0.026 
0.017 
0.015 
0.014 
0.022 
0.020 
0.029 
0.023 

where 
n 

~ - 0 . 5  /%~ t~i(X i --  60 i ) 
2 

i=1 

O = {(x, y): A l x +  A 2 Y ~ b , x > ~ O  , y>~0},  

X, A,  o 3 ~  n , 

y,  d E ~ R  k , 

A 1 E  ~)~ mxn  

A 2  (~_~ m x k  

Ol, O2 C ~ . 

Here,  m is the number of linear constraints, n is the number of concave variables 

(x), and k is the number of linear variables (y).  The parameters 01 and 0 z are - 1  
and 1 respectively, and the relative tolerance for convergence between the upper 
and lower bounds (E) is 0.01. 

The results of the application of the algorithm to these problems are given in 

Table IV. The CPU times for the GOP algorithm and the Phillips and Rosen 

algorithm (denoted by P&R) are given in seconds. However,  it should be noted 

that the P&R algorithm was run on a CRAY2. As can be seen, the algorithm 
solves problems of this size very fast, usually taking about 2-3  iterations to 

identify the optimal solution and then about 5-10 iterations to converge. 

8.2. RANDOMLY GENERATED CONCAVE PROBLEMS 

The algorithm was also applied to randomly generated problems of the form given 
above. Such problems have earlier been studied by [29]. The data for the 

constants ~, o3, d, A 1, A 2 and b was generated by the same routines used by 

Phillips and Rosen. The values of the parameters 01 and 02 are -0 .001 and 0.1 
respectively. 
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Table V gives the results of  the runs for rn = 20, n = 25 and k going from 0 to 
400, while  Table VI gives the results of  the runs for m = 20, n = 50 and k going 
from 0 to 200. In both cases, the tolerance was E = 0.1, and 10 different seeds 
were  used. In the table, N l represents the average number of iterations taken to 
converge  within e, and S l is the standard deviation for the ten runs. N c is the 
average time taken in C P U  seconds and S c is the standard deviation over ten 
runs. 

In all the cases,  the algorithm requires very few iterations for the upper bounds 
to be within 0.1 of  the optimal solution. In no instance does the algorithm take 
more  than 5 iterations to converge.  Moreover ,  as the number of  linear variables 
increases,  the total C P U  time increases almost linearly. 

Table VII gives the results of  runs for m = 20, n = 25 and k going from 0 to 100 
for a tolerance of  e = 0.001. The number of  iterations as well as the time taken to 
converge increases considerably to get to solutions of  higher accuracy. Contrary 
to this, when  the number of  constraints is increased to rn = 40 while keeping the 
tolerance at e = 0.1, (Table VIII)  the algorithm does not take any appreciably 
longer t ime to converge.  This indicates that for these sizes of  problems,  the 

Table V. Random runs for m = 2 0 ,  n = 2 5  and k ranging from 0 to 400 (E = 0 . t )  

Run Problem size Iterations CPU (sec.) 

m n k N 1 S 1 N c S c 

1 20 25 0 1.00 0.000 0.456 0.012 
2 20 25 50 2.10 0.300 1.662 1.614 
3 20 25 100 3.00 0.447 16.508 19.711 
4 20 25 200 3.18 0.833 33.149 28.441 
5 20 25 400 3.64 0.771 82.026 57.834 

Table VI.  Random runs for m = 20, n = 50 and k ranging from 0 to 200 (E = 0.1) 

Run Problem size Iterations CPU (sec.) 

m n k N x Sz N c S c 

1 20 50 0 1.00 0.000 0.554 0.012 
2 20 50 50 2.40 0.489 17.436 30.908 
3 20 50 100 2.70 0.455 46.761 49.195 
4 20 50 200 3.06 0.249 108.968 80.490 

Table VII.  Random runs for m = 20, n = 25 and k ranging from 0 to 100 (e = 0.001) 

Run Problem size Iterations CPU (sec.) 

m n k N x S r N c S c 

1 20 25 0 2.90 1.609 0.871 0.702 
2 20 25 50 6.57 5.518 6.601 7.430 
3 20 25 100 11.75 9.601 39.415 33.078 
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Table VIII.  R a n d o m  runs for m = 40, n = 25 and k ranging from 0 to 200 (e = 0.1) 

R u n  Problem size Iterations CPU (sec.) 

m n k N 1 S t N c S c 

1 40 25 0 1.00 0.000 0.465 0.017 
2 40 25 50 1.75 0.433 0.970 0.566 
3 40 25 100 2.00 0.000 2.708 4.211 
4 40 25 200 2.40 0.489 25.142 26.127 

algorithm is very fast in converging to a solution of low accuracy. What is more 
interesting to note is that in almost all cases, even when the tolerance specified is 
0.1, the actual upper bound found by the algorithm is very close (and often 
identical) to the global optimum for the problem. 

It should be noted here that all the relaxed dual subproblems are actually 
solved as linear subproblems. In fact, this is not really necessary. Due to the 
branch and bound nature of the algorithm, it is certainly possible to devise a 
method to enumerate  the solutions of the subproblems implicitly. Using such a 
scheme to solve the relaxed dual problem at every iteration would considerably 
reduce the solution time for the algorithm. 

8.3. R A N D O M L Y  G E N E R A T E D  INDEFINITE Q U A D R A T I C  P R O B L E M S  

The algorithm was also applied to randomly generated indefinite quadratic 
problems. These problems have the same form as for the concave problems, and 
are generated in the same form except for the fact that some of the A's are 
generated positive and some are generated negative. Due to the nature of the 
generation, the number of positive and negative A's generated are roughly equal. 

Table IX gives the results of the runs for m = 20, n = 25 and k going from 0 to 
400, while Table VI gives the results of the runs for m -= 20, n = 50 and k going 
from 0 to 200. In both cases, the tolerance was e =0.1 .  These problems take 
considerably more time to solve than the corresponding pure concave problems. 
The main reason for this is that in both cases, the relaxed dual problems are being 
solved as linear programming problems. For the case of concave problems, the 
linear underestimators are sufficient to provide fairly tight lower bounds for the 
optimal solution. However,  in the case of indefinite programming problems, the 
linear underestimators bound the convex terms in the objective very loosely. 

Table IX. R a n d o m  runs of indefinite quadratic problems for rn = 20, n = 25 and k ranging 
f rom 0 to 100 (e = 0.1) 

R u n  Problem size Iterations CPU (sec.) 

m n k N~ S~ Nc Sc 

1 20 25 0 2.61 2.519 21.552 80.381 
2 20 25 50 6.87 4.781 50.703 65.973 
3 20 25 100 11.32 8.710 121.718 134.201 
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Conclusions 

The GOP algorithm is a rigorous approach toward global optimization of 
mathematical programming problems that satisfy certain conditions. As part of 
the GOP algorithm, a number of relaxed dual problems need to be solved at every 
iteration. In this paper, theoretical properties based on the linearity of the 
Lagrange function that is used in the relaxed dual problems are presented for (a) 
concave quadratic problems, (b) indefinite quadratic problems, and (c) quadrati- 
cally constrained problems. These properties are illustrated through three applica- 
tions as well as a large number of randomly generated problems. As the results 
for the applications show, the new properties result in a large decrease in the 
number of relaxed dual problems that need to be solved at every iteration. At the 
same time, this results in a decrease in the number of iterations required for 
convergence, due to the decrease in the number of stored solutions that have to 
be investigated by the GOP algorithm. As a result, the new properties signifi- 
cantly improve the computational efficiency of the GOP algorithm. 

It is expected that similar properties can be developed for other classes of 
problems. Research work on the development of additional theoretical properties 
that can further enhance the computational efficiency of the GOP algorithm for 
other classes of problems is currently underway, and results will be reported in a 
future publication. 

Acknowledgement 

The authors gratefully acknowledge financial support from the National Science 
Foundation under Grant CBT-8857013. 

References 

1. Aggarwal, A. and Floudas, C. A. (1990), A Decomposition Approach for Global Optimum 
Search in QP, NLP and MINLP Problems, Annals of Operations Research 25, 119. 

2. A1-Khayyal, F. A. and Falk, J. E. (1983), Jointly Constrained Biconvex Programming, Mathe- 
matics of Operations Research 8, 273. 

3. AI-Khayyal, F. A. (1990), Jointly Constrained Bilinear Programs and Related Problems: An 
Overview, Computers in Mathematical Applications 19, 53. 

4. A1-Khayyal, F. A., Horst, R. and Pardalos, P. M. (1992), Global Optimization of Concave 
Functions Subject to Quadratic Constraints: An Application in Nonlinear Bilevel Programming, 
Annals of Operations Research, Special Issue on Hierarchical Optimization 34, 125. 

5. Archetti, F. and Schoen, F. (1984), A Survey on the Global Minimization Problem: General 
Theory and Computational Approaches, Annals of Operations Research 1, 87. 

6. Ben-Tal, Aharon and Gershovitz, Vladimir (1992), Computational Methods for the Solution of 
the Pooling/Blending Problem, Technical Report, Technion-Israel Institute of Technology, Haifa, 
Israel. 

7. Branin, F. H. (1972), Widely Convergent Methods for Finding Multiple Solutions of Simulta- 
neous Nonlinear Equations, IBM Journal of Research Developments, 504. 

8. Dixon, L. C. W. and Szego, G. P. (eds.) (1975), Towards Global Optimization, North Holland, 
Amsterdam. 



462 V. V I S W E S W A R A N  AND C. A. F L O U D A S  

9. Dixon, L. C. W. and Szego, G. P. (eds.) (1978), Towards Global Q~timization 2, North-Holland, 
Amsterdam. 

10. Floudas, C. A. and Aggarwal, A. (1990), A Decomposition Strategy for Global Optimum Search 
in the Pooling Problem, Operations Research Journal on Computing 2(3), 225. 

11. Floudas, C. A., Aggarwal, A., and Ciric, A. R. (1989), Global Optimum Search for Nonconvex 
NLP and MINLP Problems, Computers and Chemical Engineering 13, 1117. 

12. Floudas, C. A. and Pardalos, P. M. (1990), A Collection of Test Problems for Constrained Global 
Optimization Algorithms, Lecture Notes in Computer Science, eds. G. Goos and J. Hartmanis, 
Vol. 455, Springer-Verlag. 

13. Floudas, C. A. and Pardalos, P. M. (1992), Recent Advances in Global Optimization, Princeton 
Series in Computer Science, Princeton University Press, Princeton, New Jersey. 

14. Floudas, C. A. and Visweswaran, V. (1990), A Global Optimization Algorithm (GOP) for 
Certain Classes of Nonconvex NLPs-I. Theory, Computers and Chemical Engineering 14(12), 
1419. 

15. Floudas, C. A. and Visweswaran, V. (1993), A Primal-Relaxed Dual Global Optimization 
Approach: Theory, Journal of Optimization Theory and Applications 78(2) (in press). 

16. Geoffrion, A. M. (1972), Generalized Benders Decomposition, Journal of Optimization Theory 
and Applications 10, 237. 

17. Hansen, E. R. (1979), Global Optimization Using Interval Analysis: The One-Dimensional Case, 
Journal of Optimization Theory and Applications 29, 331. 

18. Hansen, P., Jaumard, B., and Lu, S.-H. (1992), Global Optimization of Univariate Lipschitz 
Functions: I. Survey and Properties, Mathematical Programming 55, 251-272. 

19. Hansen, P., Jaumard, B. and Lu, S.-H. (1992), Global Optimization of Univariate Lipschitz 
Functions: II. New Algorithms and Computational Comparisons, Mathematical Programming 55, 
273-292. 

20. Hansen, P., Jaumard, B., and Lu, S.-H. (1991), An Analytical Approach to Global Optimization, 
Mathematical Programming 52, 227. 

21. Horst, R. and Tuy, H. (1987), On the Convergence of Global Methods in Multiextremal 
Optimization, Journal of Optimization Theory and Applications 54, 253. 

22. Horst, R. and Tuy, H. (1990), Global Optimization: Deterministic Approaches, Springer-Verlag. 
23. Kirkpatrick, S., Gelatt, C. D. and Vecchi, M. P. (1983), Optimization by Simulated Annealing, 

Science 220, 671. 
24. Levy, A. V. and Montalvo, A. (1985), The Tunneling Algorithm for the Global Minimization of 

Functions, SlAM J. of Sci. Stat. Comp. 6, 15. 
25. Mockus, J. (1989), Bayesian Approach to Global Optimization - Theory and Applications, Kluwer 

Academic Publishers, The Netherlands. 
26. Pardalos, P. M., Glick, J. H. and Rosen, J. B. (1987) Global Minimization of Indefinite Quadratic 

Problems, Computing 39, 281. 
27. Pardalos, P. M. and Rosen, J. B. (1986), Methods for Global Concave Minimization: A 

Bibliographic Survey, SlAM Review 28, 367. 
28. Pardalos, P. M. and Rosen, J. B. (1987), Constrained Global Optimization: Algorithms and 

Applications, v. 268 of Lecture Notes in Computer Science, Springer Verlag. 
29. Phillips, A. T. and Rosen, J. B. (1988), A Parallel Algorithm for Concave Quadratic Global 

Optimization, Mathematical Programming 42, 421. 
30. Piyavskii, S. A. (1972), An Algorithm for Finding the Absolute Extremum of a Function, USSR 

Comput. Math. Phys. 12, 57. 
31. Ratschek, H. and Rokne, J. (1988), New Computer Methods for Global Optimization, Halsted 

Press. 
32. Rinnooy Kan, A. H. G. and Timmer, G. T. (1987), Stochastic Global Optimization Methods. 

Part I: Clustering Methods, Mathematical Programming 39, 27. 
33. T6rn, A. and Zilinskas, A. (1987), Global Optimization, Lecture Notes in Computer Science, No. 

350, Springer-Verlag. 
34. Tuy, H., Thieu, T. V., and Thai, N. Q. (1985), A Conical Algorithm for Globally Minimizing a 

Concave Function Over a Closed Convex Set, Mathematics of Operations Research 10, 498. 
35. Zilinskas, A. (1986), Global Optimization- Axiomatics of Statistical Models, Algorithms and 

Their Applications, Moklas, Vilnius. 


